检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宁 李晓波 杨海波 胡飞虎[2] 马千里[2] Wang Ning;Li Xiao-bo;Yang Hai-bo;Hu Fe-hu;Ma Qian-li
机构地区:[1]国家电网宁夏电力有限公司信息通信公司,宁夏银川750000 [2]西安交通大学,陕西西安710049
出 处:《电力系统装备》2020年第5期142-143,153,共3页Electric Power System Equipment
摘 要:数据中心机房大多采用不间断空调制冷来对机房的温度进行控制,这样不仅能耗高且效率低,因此如果能对机房温度进行准确预测,并根据预测结果合理控制空调可以为企业节省巨大成本。针对这一情况,文章提出了一种工作日期间机房温度预测方法,只考虑工作日期间采集的机房温度数据,在相邻的两段工作日之间,利用数据拟合算法对首尾数据进行拟合,对拼接处的部分数据用拟合数据代替,然后利用多层长短期记忆神经网络(LSTM)模型对处理后的数据和原始数据分别进行预测,比较两者的预测结果,最终证明用本文提出的方法对数据处理后可以得到更精确的预测结果。Most data center computer rooms use uninterrupted air conditioning to control the temperature of the computer room.This not only has high energy consumption and low efficiency,so if the temperature of the computer room can be accurately predicted and the air conditioning can be properly controlled based on the prediction results,it can save huge profits for the enterprise cost.In view of this situation,a method for predicting the temperature of the computer room during the working day is proposed.Only the temperature data collected during the working day is considered.Between two adjacent working days,the data fitting algorithm is used to fit the head and tail data.,Replace part of the data at the splicing area with fitting data,and then use the multi-layer long-term short-term memory neural network(LSTM)model to predict the processed data and the original data separately,compare the prediction results of the two,and finally prove that this paper proposes The method can get more accurate prediction results after processing the data.
关 键 词:数据中心机房 工作日温度预测 数据拟合 长短期记忆神经网络
分 类 号:TP308[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177