A syntactic path-based hybrid neural network for negation scope detection  被引量:3

在线阅读下载全文

作  者:Lydia LAZIB Bing QIN Yanyan ZHAO Weinan ZHANG Ting LIU 

机构地区:[1]Research Center for Social Computing and Information Retrieval,Harbin Institute of Technology,Harbin 150001,China

出  处:《Frontiers of Computer Science》2020年第1期84-94,共11页中国计算机科学前沿(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.61632011,61772153,71490722);Hei-longjiang philosophy and social science research project(16TQD03)。

摘  要:The automatic detection of negation is a crucial task in a wide-range of natural language processing(NLP)applications,including medical data mining,relation extraction,question answering,and sentiment analysis.In this paper,we present a syntactic path-based hybrid neural network architecture,a novel approach to identify the scope of negation in a sentence.Our hybrid architecture has the particularity to capture salient information to determine whether a token is in the scope or not,without relying on any human intervention.This approach combines a bidirectional long shortterm memory(Bi-LSTM)network and a convolutional neural network(CNN).The CNN model captures relevant syntactic features between the token and the cue within the shortest syntactic path in both constituency and dependency parse trees.The Bi-LSTM learns the context representation along the sentence in both forward and backward directions.We evaluate our model on the Bioscope corpus,and get 90.82%F-score(78.31%PCS)on the abstract sub-corpus,outperforming features-dependent approaches.

关 键 词:natural language processing NEGATION SCOPE DETECTION convolutional NEURAL NETWORK recurrent NEURAL NETWORK SYNTACTIC path 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象