检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付婧 罗建[1] 龙彦霖 苗晨 程玉勤 FU Jing;LUO Jian;LONG Yanlin;MIAO Chen;CHENG Yuqin(School of Computer Science, China West Normal University, Nanchong,Sichuan 637009, China)
机构地区:[1]西华师范大学计算机学院,四川南充637009
出 处:《内江师范学院学报》2020年第4期41-51,共11页Journal of Neijiang Normal University
基 金:国家自然科学基金项目(61871330);四川省教育厅自然科学重点项目(18ZA0468,14ZA0123);西华师范大学英才科研基金项目(17YC155,17YC157)。
摘 要:为了改进传统的语音识别方法,使其达到低时延、高识别率的目的,以前馈序列记忆网络(feed-forward sequential memory network,FSMN)为研究主线,对语音识别的发展历程,FSMN的各种变体及其相应的应用状况进行综述,结果表明FSMN在语言建模任务上,使用wiki 9数据集能使Perplexity值降到90,并且训练周期比RNN快2倍.未来语音识别的发展趋向于更高识别性能和更多语种.In order to improve the traditional speech recognition method to achieve the purpose of low latency and high recognition rate,a review was made of applications of(feed-forward sequential memory network,FSMN)in terms of the development of speech recognition,the various variants of FSMN with feedforward sequence memory network as the research main line.The results showed that FSMN can reduce the Perplexity to 90 by use of the wiki9 data set on solving language modeling tasks,and the training cycle is 2 times faster than by use of RNN.Future developing trend is directed to a higher recognition performance in speech recognition and multilingual speech recognition.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222