基于高斯扰动和指数递减策略的改进蝙蝠算法  被引量:4

Improved bat algorithm based on Gaussian disturbance and exponential decreasing strategy

在线阅读下载全文

作  者:宋一民 李煜 Song Yimin;Li Yu(College of Logistics&Management,Zhengzhou Institute of Finance&Economics,Zhengzhou 450000,China;Business School,Henan University,Kaifeng Henan 475004,China;b.Research Institute of Management Science&Engineering,Henan University,Kaifeng Henan 475004,China)

机构地区:[1]郑州财经学院现代物流与管理系,郑州450000 [2]河南大学商学院,河南开封475004 [3]河南大学管理科学与工程研究所,河南开封475004

出  处:《计算机应用研究》2020年第5期1384-1389,共6页Application Research of Computers

基  金:国家自然科学基金资助项目(71601071);国家教育部人文社科青年基金资助项目(15YJC630079);河南省重点研发与推广专项资助项目(182102310886);河南省科技攻关重点项目(162102110109)。

摘  要:针对基本蝙蝠算法后期收敛速度慢、收敛精度不高、稳定性不强等问题,提出基于高斯扰动和指数递减策略的改进蝙蝠算法(GDEDBA)。将指数递减策略引入速度更新公式,使算法迅速进入局部寻优并展开精确搜索;构造高斯扰动项加入到局部新解产生公式,使局部新解中所有粒子与当前全局最优粒子产生信息交流与学习,防止陷入局部最优,增加种群多样性;设计扰动控制因子来控制高斯扰动的扰动范围,增强算法的稳定性。15个测试函数的仿真结果表明,改进算法的寻优性能显著提高,收敛速度更快,求解精度更高,稳定性更强。Aiming at the shortcomings of the basic bat algorithm such as slow convergence,low convergence precision and weak stability,this paper designed an improved bat algorithm based on Gaussian disturbance and exponential decreasing strategy(GDEDBA).It introduced the exponential decreasing strategy into the speed update formula,which made the algorithm enter local optimization quickly and perform a precise search.It added the constructed Gaussian disturbance term to the local new solution gene-ration formula,then made the information exchange and study between all particles in the local new solution and the current global optimal particles,prevented falling into local optimum and increased population diversity.It designed the disturbance control factor to control the disturbance range of Gaussian disturbance,enhanced the stability of the algorithm.The simulation results of 15 classical test functions show that the optimization performance of improved algorithm is significantly improved,the convergence speed is faster,the solution accuracy is higher,and the stability is stronger.

关 键 词:蝙蝠算法 高斯扰动 指数递减策略 算法改进 函数优化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象