定点形变破年变异常自动识别应用研究  被引量:5

Application Research on Automatic Identification of Annual Cycle Breaking Anomalies in the Fixed-point Deformation

在线阅读下载全文

作  者:苑争一 闫伟[1] 牛安福[1] 赵静[1] 高歌[2] YUAN Zhengyi;YAN Wei;NIU Anfu;ZHAO Jing;GAO Ge(China Earthquake Networks Center,Beijing 100045,China;Xinjiang Uygur Autonomous Region Eorthquake Agency,Urumqi 830011,Xinjiang,China)

机构地区:[1]中国地震台网中心,北京100045 [2]新疆维吾尔自治区地震局,新疆乌鲁木齐830011

出  处:《地震研究》2020年第2期394-401,共8页Journal of Seismological Research

基  金:国家重点研发计划(2018YFE0109700,2017YFC1500502);中国地震台网中心2019年度青年科技基金(QNJJ201902);中国地震局2019年度震情跟踪定向工作任务(2019010201)联合资助.

摘  要:基于奇异谱分析算法,以新疆东风煤矿钻孔倾斜EW分量和巴里坤水平摆倾斜NS分量为例,在去除典型干扰及长周期趋势变化的基础上,拟合观测资料背景年变序列。对于残差时间序列,结合震例进行动态R值检验,自动提取破年变异常特征时段,递归求解出了最高R值评分对应的异常判定准则。进而自动识别出具有最佳映震效能的破年变异常时段,实现了破年变异常判定的自动化和定量化,提高了前兆异常信号识别的可靠性和准确性。Based on the Singular Spectrum Analysis(SSA)and the EW component of borehole tilt data in Xinjiang Dongfeng coal mine station,the NS component of quartz horizontal pendulum tiltmeter in Xinjiang Balikun station,this study has realized the fitting of the background annual variation information of the observation data by eliminating the typical interference and long period trend changes.The dynamic R value test was performed on the residual time series combined with the earthquake examples,and the annual cycle breaking anomalies are automatically extracted.At the same time,the anomaly determination criterion corresponding to the highest R value score is recursively solved.Then the annual cycle breaking periods are automatically identified with the best reflection performance on earthquakes,and the automation and quantification of the determination of anomalies are realized.Under the current level of knowledge and conditions,the reliability and accuracy of precursory abnormal signal recognition have been improved.

关 键 词:奇异谱分析SSA 定点形变 预测效能检验 

分 类 号:P315.725[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象