茶叶浸出液中农药残留表面拉曼光谱检测与初步定量分析  被引量:3

Determination and quantitative analysis of pesticide residues in tea leachate by surface enhanced raman spectroscopy

在线阅读下载全文

作  者:许丽梅 赖国银 康怀志 XU Limei;LAI Guoyin;KANG Huaizhi(Department of Science and Technology for Inspection,Xiamen Hua Xia University,Xiamen 361024;Technical Center of Xiamen Entry-Exit Inspection and Quarantine Bureau,Xiamen 361026;Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361005)

机构地区:[1]厦门华厦学院环境与公共健康学院,厦门361024 [2]厦门市出入境检验检疫局技术中心,厦门361026 [3]厦门大学萨本栋微米纳米科学技术研究院,厦门3610005

出  处:《分析试验室》2020年第2期148-153,共6页Chinese Journal of Analysis Laboratory

基  金:国家重大科学仪器设备开发专项项目(2011TQ03012117);福建省自然科学基金项目(2016J05045)资助。

摘  要:选取甲基对硫磷和水胺硫磷为研究对象,改良了传统的QuEChERS前处理工艺,以自制纳米金溶胶为增强基底,利用表面增强拉曼光谱(SERS)技术,对茶叶浸出液中的农药残留进行检测。通过比对两种有机磷农药的拉曼特征峰进行定性分析。同时,选取570,1034,1107和1202 cm^-1等拉曼位移附近的特征峰光谱数据,利用微分等数学手段,结合偏最小二乘法(PLSR)建立回归方程,预测样品中农药残留含量。所得预测数值与气相色谱-质谱联用(GC-MS)法检测值对比,验证本方法的可行性与可信度。结果表明:基于SERS技术对上述两种有机磷农药的检出限可达0.05 mg/L;通过数学模型分析建立回归方程,其线性相关系数范围为0.9077~0.9824,预测均方根误差(RMSEP)范围为0.77%~2.68%;利用回归方程得到的预测值与GC-MS检测结果基本接近,相对误差范围-5.16%~9.03%,回收率为81.4%~115.1%,说明可以用SERS技术对茶叶浸出液中的有机磷农药残留进行定性和初步定量分析。Methyl-parathion and thiophosphate were selected as research objects,the traditional Qu EChERS(Quick,Easy,Cheap,Effective,Rugged,and Safe)method was reformed,and gold nanoparticles were prepared as the reinforcing substrate.Surface Enhanced Raman spectroscopy(SERS)technology was used to detect pesticide residues in tea leaching liquid,and qualitative analysis was carried out by comparing the Raman characteristic peaks of the two organophosphorus pesticides.At the same time,first-order differential analysis was performed on characteristic peak spectral data of 570,1034,1107 and 1202 cm^-1,and Partial Least Squares Regression(PLSR)was used to establish regression equations for predicting pesticide residue in samples.The prediction results were compared with those obtained by gas chromatography-mass spectrometry(GC-MS)to verify the feasibility and reliability of this method.Experimental results showed that the detection limit of the two kinds of organophosphorus pesticide could be down to 0.05 mg/L.Partial least squares regression(PLSR)models were further employed to correlate SERS signals of extracts with the logarithm concentrations of either pesticide for quantitative analysis,which displayed a certain linear relationship.The coefficients of determination(R^2)with PLSR models were between 0.9077 and 0.9824 for pesticides residues on tea.The predicted Root Mean Squared Error of Prediction(RMSEP)ranged from 0.77%to 2.68%.The predicted value obtained by using regression equation was basically close to the detection result of GC-MS,the relative error ranged from-5.16%to 9.03%,and the recoveries were from 81.4%to 115.1%,indicating that SERS technology could be used for qualitative and preliminary quantitative analysis of organophosphorus pesticide residues in tea.

关 键 词:surface enhanced RAMAN spectroscopy PESTICIDE RESIDUES quantitative analysis partial least SQUARES regression QUECHERS 

分 类 号:O657.37[理学—分析化学] S571.1[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象