开关柜局部放电信号降噪与缺陷识别研究  被引量:3

Noise reduction and defect recognition of partial discharge signals in switchgear

在线阅读下载全文

作  者:杨寅明 韩志 YANG Yin-ming;HAN Zhi(State Gird Jibei Electric Power Co.,Ltd.,Chengde Power Supply Company,Chengde 067000,Hebei Province,China)

机构地区:[1]国网冀北电力公司承德供电公司,河北承德067000

出  处:《信息技术》2020年第5期155-159,164,共6页Information Technology

摘  要:文中采用暂态地电压法(TEV)进行检测,设计了四种典型的缺陷模型并搭建试验平台,分别对局部放电缺陷模型进行了实验。由于变电站现场环境复杂,需要对采集的信号进行信号降噪。针对以往小波降噪都是按照经验采取固定的分解层数的问题,提出一种Mallat算法结合最优分解层数自适应算法对含噪信号进行分离与重构,结果显示该算法可以很好地滤除噪声。对重构后的局放信号提取八种时域特征参数,并采用BP神经网络对开关柜局部放电的类型进行识别,当误差准确率δ=0.002时,放电类型的识别正确率最高,能够达到97%。In this paper,the transient ground voltage method(TEV) is used to test,four typical defect models are designed,and a test platform is built.The partial discharge defect model is tested separately.Due to the complex environment of the substation,it is necessary to perform signal denoising on the collected signals.Aiming at the problem that the wavelet denoising is based on the experience of taking a fixed number of decomposition layers,a Mallat algorithm combined with an optimal decomposition layer adaptive algorithm is proposed to separate and reconstruct the noisy signals.The results show that the algorithm can filter out noise well.The reconstructed partial discharge signal is extracted from eight time domain characteristic parameters,and BP neural network is used to identify the type of partial discharge of the switchgear.When the error accuracy rate is 0.002,the correct recognition rate of the discharge type is the highest,which can reach 97%.

关 键 词:TEV 局部放电检测系统 MALLAT算法 最优分解层数 缺陷识别 

分 类 号:TM76[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象