机构地区:[1]中国农业科学院农业环境与可持续发展研究所/农业部农业环境重点实验室,北京100081 [2]东华理工大学地球科学学院,南昌330000 [3]杭州电子科技大学计算机学院,杭州310000
出 处:《中国农业气象》2020年第5期308-319,共12页Chinese Journal of Agrometeorology
基 金:十三五国家重点研发计划子课题(2017YFD0300402-2)。
摘 要:利用东北地区167个气象站1986-2015年的逐日气象资料和28个物候观测站1991-2008年的逐年水稻生育期数据,参照水稻障碍型冷害国家标准,分三个时间段(1986-1995年、1996-2005年和2006-2015年)划分东北地区不同熟性水稻适宜种植区,利用冷害发生频率和站次比分析东北地区近30a(1986-2015年)不同熟性水稻适宜种植区障碍型冷害的时空规律。结果表明:研究期内,东北地区不适宜种植区域面积逐渐减小,不同熟性适宜种植区呈现北移东扩的趋势,其中以晚熟区扩大范围最为明显。不同熟性水稻适宜种植区障碍型冷害具有波动发生的特点,不同熟性区年平均冷害站次比大小表现为早熟区>晚熟区>中熟区;2006-2015年为早熟区冷害多发时段,1986-1995年为中熟区冷害多发时段,1996-2005年为晚熟区冷害多发时段;在早熟区冷害多发时段内,重度冷害的发生频率减少;2006年以后中熟区和晚熟区冷害总发生频率减小,但部分区域的不同等级冷害发生频率提高。可见,东北地区障碍型冷害发生仍具有不确定性,即使在整体冷害频率下降的情况下,个别区域在某些年份仍可能发生不同程度的冷害。Northeast China is the main rice producing area in China, and chilling damage is the most serious meteorological disaster affecting rice production in this area. Study on the temporal and spatial distribution of sterile-type chilling damage in the rice growth-suited areas with different maturity is helpful to provide the scientific basis for the rational production and management of rice in Northeast China. Based on the daily mean air temperature data at 167 meteorological stations and rice growth stage record data at 28 phenological observation stations, Chilling Damage Grade of Rice Northern China(GB/t 34967-2017) was selected to evaluate sterile-type chilling damage in the rice growth-suited areas with different maturity in Northeast China. First, the rice growth-suited areas with different maturity at three stages 1986-1995, 1996-2005 and 2006-2015 were determined based on the 80% guarantee rate of active accumulated temperature. Then, the ratio(F) of the meteorological stations with sterile-type chilling damage and frequency(P) of chilling damage were calculated to analyze temporal and spatial distribution of the damage from 1986 to 2015. The results showed that the area unsuitable for rice growth decreased gradually and the rice growth-suited area with different maturity showed an expanding trend towards north and east. Among them, the late-maturating rice area showed the most significant increase. The ratio(F) of the stations with sterile-type chilling damage was the largest in the early-maturating rice area, followed by the late-maturating rice area and midseason-maturating rice area. The occurrence frequency(P) of sterile-type chilling damage varied greatly among stations and rice growth-suited areas with different maturity. During 1986-1995, 1996-2005 and 2006-2015, obvious sterile-type chilling damage mainly occurred in the midseason-maturating, late-maturating and early-maturating rice area, respectively. During 2006-2015, the frequency(P) of sterile-type chilling damage with Sever grade reduced in th
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...