检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易佳明 胡小龙[1] YI Jiaming;HU Xiaolong(School of Computer Science, Central South University, Changsha 410075, China)
出 处:《湖北大学学报(自然科学版)》2020年第3期320-324,共5页Journal of Hubei University:Natural Science
摘 要:将深度学习的图像识别应用到工业生产中是一个重要的应用方向.相比传统图像处理,深度学习在图像识别中具有高识别率、抗干扰性强等特点.首先采用小波变换对图像去噪、归一化,然后利用多层卷积对图像进行特征提取并采用全连接层和softmax分类器进行分类实现图像识别.在铝厂工业自动浇注过程中,对已经浇注完成和未完成的图像进行识别、解决传统图像处理在工业生产中多干扰、亮度不足的情况下难以识别的问题.实验结果表明,采用小波变换与深度学习融合对图像进行识别的识别率可达到91.88%,基本能满足铝厂工业生产的需要.It is an important applicational direction to apply deep learning to image recognition in industrial production.Compared with traditional image processing,deep learning has the characteristics of high identification rate and strong anti-interference ability in image recognition.In the beginning,wavelet transformation is used to denoise and normalize the image.Then,multi-layer convolution is used to extract the image’s features.In the end,the whole connective layer and softmax classifier are used to finish recognizing image.In the automatic pouring process of aluminum plant industry,the finished and unfinished images are identified.This method solves the problem that traditional image processing is difficult to identify in the case of multiple interference and insufficient brightness in industrial production.The experimental results show that the recognition rate of image recognition using wavelet transform and deep learning fusion can reach 91.88%.
分 类 号:TP131.4[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117