检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王毅 张晓美[2] 盛杰 杨吉[3] WANY Yi;ZHANG Xiaomei;SHENG Jie;YANG Ji(National Meteorological Center,China Meteorological Administration,Beijing 100081,China;Public Meteorological Service Centre,China Meteorological Administration,Beijing 100081,China;Jiangsu Institute of Metrological Science,Nanjing 210009,China)
机构地区:[1]国家气象中心,北京100081 [2]中国气象局公共气象服务中心,北京100081 [3]江苏省气象科学研究所,南京210009
出 处:《气象科学》2020年第2期241-248,共8页Journal of the Meteorological Sciences
基 金:国家重点研发计划项目(2017YFC1502004);国家科技支撑项目(2015BAC03B01);2014年“北级阁”江苏省气象局开放研究基金(BJG201406)。
摘 要:利用2009—2015年江淮夏季雷暴大风观测资料和NCEP再分析资料,按整层可降水量将雷暴大风环境划分为干、湿两种环境,结果发现湿环境雷暴大风日约占总雷暴大风日数的86%。基于物理量参数和Logistic回归方法构建了江淮夏季干、湿环境下区域雷暴大风的潜势预报模型。西南区、东南区和北区湿环境雷暴大风的最显著预报因子分别是冰雹指数(CS)、K指数和沙氏指数(SI)。干环境雷暴大风的最显著预报因子是总指数(TT)。相对于大风指数(WINDEX),综合考虑热力学作用和高空水平动量信息的新大风指数(GUSTEX)对江淮干、湿环境雷暴大风的预报指示意义更好。通过历史样本回报确立了预报模型的概率阈值,并利用2016年独立样本试预报检验证明Logistic模型预报效果良好。By using thunderstorm gales observations in summer in the period of 2009—2015 and NCEP reanalysis data,this study divides the thunderstorm gales environment into dry and wet environment.The results show that the thunderstorm gales days in wet environment account for about 86%of all thunderstorm gales days.Based on physical quantity parameters and Logistic regression method,potential forecast models for regional thunderstorm gales in dry and wet environment during summer over Yangze-Huaihe River Basin are developed.The most significant predictors for thunderstorm gales in wet environment over southwest,southeast and north regions are CS,K and SI,respectively.The most significant predictor for thunderstorm gales in dry environment is TT.Compared to WINDEX,the new wind index(GUSTEX)which considers both thermodynamical effect and high-level horizontal momentum information shows better predictive significance for thunderstorm gales in dry and wet environment over Yangze-Huaihe River Basin.The probability thresholds are determined through historical sample return.The independent samples of 2016 are used to verify the model and the Logistic model is proved to have a good performance.
关 键 词:雷暴大风 物理量参数 LOGISTIC回归模型 大风指数
分 类 号:P446[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249