检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:成保梅[1] 韩景灵[1] CHENG Bao-mei;HAN Jing-ling(Business College,Shanxi University,Shanxi Taiyuan 030031,China)
出 处:《计算机仿真》2020年第4期326-329,共4页Computer Simulation
基 金:院级科研资金资助项目(编号2018016):融合情境因素的电子商务推荐方法研究。
摘 要:针对当前电子商务用户兴趣挖掘过程,普遍存在准确度较低、综合性能较差以及召回率较低等问题。提出融合情境因素下基于网络结构的电子商务用户兴趣挖掘方法。通过计算融合情境相似度来获取电子商务用户当前情境的近似情境集,对电子商务用户-兴趣项-情境构建三维模型,采用情境预过滤方法对近似情境集进行降维处理,以此得到每种主题的兴趣度。根据兴趣度大小将电子商务用户模式划分为低兴趣度、一般兴趣度、高兴趣度三个级别,保留电子商务用户兴趣度较高的模式,删除较低的模式,完成电子商务用户兴趣挖掘。实验结果表明,所提出方法用户兴趣挖掘准确率较高、综合性能较好、召回率较高。Due to low accuracy, poor comprehensive performance and low recall rate of current method, this paper proposes a method to mine e-commerce user interest with situational factors based on network structure. By calculating the similarity of fusion context, we obtained the approximate situation set of e-commerce users in current situation. Then, we constructed the three-dimensional model of e-commerce users-interest items-context. Meanwhile, we used situational pre-filtering to reduce the dimension of approximate situation set, so as to get the interest degree of each topic. According to the interest degree, we divided the e-commerce user model into three levels:low interest, general interest and high interest degree. Finally, we retained the mode with high interest degree and deleted the mode with low interest degree. Thus, we completed the e-commerce user interest mining. Simulation results show that the proposed method has higher accuracy, better comprehensive performance and higher recall rate during the user interest mining.
分 类 号:TP393.09[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.145.114