检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向志华 贺艳芳 XIANG Zhi-hua;HE Yan-fang(Dept.of Information and technology,Guang Dong Polytechnic College Zhaoqing Guangdong 526100;Henan University Minsheng College,Kaifeng Henan 475000 China)
机构地区:[1]广东理工学院信息技术学院,广东肇庆526100 [2]河南大学民生学院,河南开封475000
出 处:《计算机仿真》2020年第4期397-401,共5页Computer Simulation
基 金:教育部哲学社会科学研究2009年度重大攻关项目“义务教育学校布局问题研究”(09JZD0035)。
摘 要:由于相干斑噪声会导致图像特征提取困难,普通的图像处理算法无法对相干斑噪声图像进行有效分类标注。针对其图像特征设计了具有正则与拟合项的求解模型,并提出了深度迁移学习标注算法。在正则项中引入滤波算法和惩罚策略,用于过滤相干斑噪声;拟合项控制估计结果向真实结果的逼近。为满足深度学习网络处理的凸特性要求,对模型采取非凸优化。在深度学习过程中,将图像标注整体分为两个子任务,通过参数迁移进行并行处理。在各个子任务的最末层,分别设计相应的损失函数,对各个特征标签采取计分评价,改善网络学习的搜索能力和收敛性。通过和数据库的仿真,验证了深度迁移学习标注算法能够有效过滤图像中的相干斑噪声,获得更好的图像标注准确性和稳定性。Because the speckle noise may lead to the difficulty of image feature extraction, the common image processing algorithm can not effectively classify and label the speckle noise image. Therefore, a solution model with regular and fitting terms was designed for its image features, and a depth migration learning annotation algorithm was proposed. Filtering algorithm and penalty strategy were introduced into the regular term to filter the speckle noise. The fitting term controled the approximation of the estimated result to the real one. In addition, in order to meet the convexity requirements of deep learning network processing, nonconvex optimization was adopted for the model. In the process of deep learning, the whole image annotation was divided into two sub tasks, which were processed in parallel by parameter migration. At the end of each sub task, the corresponding loss function was designed. To improve the search ability and convergence of network learning, the feature tags were evaluated by scoring. Through the simulation experiment of corel5 k and iaprtc-12 database, it was verified that the algorithm can effectively filter the speckle noise in the image and obtain better accuracy and stability of image annotation.
关 键 词:相干斑噪声 正则表达式 深度迁移学习 卷积网络 图像标注算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30