检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁毅[1] 陈金栋 苏超 毕临风 LIANG Yi;CHEN Jin-dong;SU Chao;BI Ling-feng(Computer Academy,Beijing University of Technology,Beijing 100124,China)
出 处:《软件导刊》2020年第4期89-92,共4页Software Guide
基 金:国家自然科学基金项目(91646201,91546111);国家重点研发计划项目(2017YFC0803300)。
摘 要:Spark是大数据内存计算系统的典型代表,通过内存缓存数据加速迭代型、交互型大数据应用的运行。基于时间窗口的数据分析是一类典型的大数据迭代型应用。基于Spark平台运行时间窗口数据分析应用,存在中间结果数据放置不均的问题,造成应用执行效率降低。针对上述问题,提出基于遗传算法的Spark中间结果数据迁移策略,通过考虑中间结果数据迁移时机、迁移数据规模,并使用遗传算法优化选取迁移数据放置位置,提高时间窗口应用执行效率。实验结果表明,在既有Spark平台中,采用该迁移策略可使时间窗口应用执行时间最大减少28.45%,平均减少21.59%。Spark is a typical representative of big data memory computing system.It accelerates the operation of iterative,interactive and other big data applications through the memory-based data cache.Data analysis based on time window is a typical big data iterative application.Data analysis application based on Spark platform's runtime window has the problem of uneven placement of intermediate result data,which reduces the efficiency of application execution.To solve the above problems,this paper proposes Spark intermediate results data migration strategy based on genetic algorithm.By considering the migration timing and data scale of intermediate results data,and using genetic algorithm to optimize the selection of the location of migrated data,the execution efficiency of time window application is improved.Experiments show that on the existing Spark platform,by using the proposed intermediate results data migration strategy,it can reduce the maximum execution time of time window applications by 28.45%and the average by 21.59%.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173