检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianya Liu Haiwei Sun Yangbo Ye
机构地区:[1]School of Mathematics,Shandong University,Jinan 250100,China [2]School of Mathematics and Statistics,Shandong University,Weihai 264209,China [3]Department of Mathematics,The University of Iowa,Iowa City,IA 52242-1419,USA
出 处:《Science China Mathematics》2020年第5期823-844,共22页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11531008);Ministry of Education of China(Grant No.IRT16R43);Taishan Scholar Project of Shandong Province;supported by National Natural Science Foundation of China(Grant No.11601271);China Postdoctoral Science Foundation(Grant No.2016M602125);China Scholarship Council(Grant No.201706225004)。
摘 要:Let f and g be holomorphic cusp forms of weights k1 and k2 for the congruence subgroups TO(N1)and Γ0(N2),respectively.In this paper the square moment of the Rankin-Selberg L-function for f and g in the aspect of both weights in short intervals is bounded,when k1^ε <<k^2<<k1^1-ε.These bounds are the mean Lindelof hypothesis in one case and subconvexity bounds on average in other cases.These square moment estimates also imply subconvexity bounds for individual L(1/2+it,f×g) for all g when f is chosen outside a small exceptional set.In the best case scenario the subconvexity bound obtained reaches the Weyl-type bound proved by Lau et al.(2006) in both the k1 and k2 aspects.
关 键 词:automorphic L-function congruence subgroup cusp form holomorphic cusp form Rankin-Selberg L-function square moment subconvexity bound
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49