检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张智强 ZHANG Zhiqiang(School of information science and technology Zhejiang Sci-Tech University,Hangzhou 310018,China)
出 处:《移动通信》2020年第5期16-20,共5页Mobile Communications
摘 要:在下行链路传输场景中,发射机处的功率分配和波束赋形设计至关重要。考虑一个多用户Massive MIMO系统中总功率约束下最大化加权和速率问题,经典的WMMSE算法可以获取次优解,但计算复杂度过高。为了降低计算复杂度,提出了一种基于深度学习的快速波束赋形设计方法,该方法可以离线训练深度神经网络,利用训练后的神经网络求解最优波束赋形解,只需要简单的线性和非线性操作即可完成。实验结果显示,该方法可以逼近WMMSE算法精度的90%以上,同时计算复杂度和时延也大大降低。In a downlink transmission scenario,the design of power allocation and beam assignment at the transmitter is critical.This paper considers a problem of maximizing the weighting rate under the total power constraint in a multi-user massive MIMO system,where the classical weighted minimum mean square error (WMMSE) algorithm can obtain suboptimal solutions with high computational complexity.In order to reduce the computational complexity,this paper proposes a fast beamforming design method based on deep learning,which can train a deep neural network offline and use the trained neural network to solve the optimal beamforming with simple linear and nonlinear operations.Experimental results show that the method can approximate more than 90% accuracy of the WMMSE algorithm,while the computational complexity and delay are greatly reduced.
关 键 词:Massive MIMO 预编码 WMMSE 深度学习
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33