硬煤超大采高智能化综放开采关键技术装备研究  被引量:11

Key technologies and equipment for intelligent fully-mechanized top-coal caving of hard coal with super large mining height

在线阅读下载全文

作  者:韩会军[1] 曾明胜[1] 闫跃 李申龙 HAN Hui-jun;ZENG Ming-sheng;YAN Yue;LI Shen-long(Coal Mining and Designing Department,Tiandi Science and Technology Co.,Ltd.,Beijing 100013,China;Yanzhou Coal Mining Co.,Ltd.,Zoucheng 273500,China;Shaanxi Future Energy Chemical Corporation,Yulin 719000,China)

机构地区:[1]天地科技股份有限公司开采设计事业部,北京100013 [2]兖州煤业股份有限公司,山东邹城273500 [3]陕西未来能源化工有限公司,陕西榆林719000

出  处:《煤炭工程》2020年第4期1-5,共5页Coal Engineering

基  金:国家重点研发计划资助项目(2018YFC0604505);中央国有资本金资助项目(财企[2013]472)。

摘  要:为实现8~12m硬质特厚煤层安全高效开采,针对硬煤冒放性差的特点,采用小采放比开采模式,增加割煤高度,利用围岩扰动改善顶煤冒放性能,实施超大采高综放开采,研究了硬煤超大采高综放开采成套装备,得出了工作面总体设备配套参数,优化了工作面大梯度过渡技术及端头区多设备联合支护方案。针对顶煤冒落块度大问题,研究了大运量煤流运输系统,配套采用后部刮板输送机交叉侧卸技术,配置了煤流四级破碎体系,工作面采用高可靠性智能控制采煤机,创新研发了强扰动高效放煤机构及"记忆+远程干预"放煤系统,创建了具有主动感知、自动分析、系统协同性能的安全高效的智能综放工作面,为实现年产1.5Mt特厚煤层综放开采奠定了基础。For safe and efficient mining in 8~12 m extra-thick hard coal seam,the fully mechanized top-coal caving mining with super-large mining height,with the cutting height increased,is adopted to enhance the caving performance of top-coal,the matching parameters of working face equipment are optimized,a complete set of equipment is developed for fully mechanized top-coal caving with super-large mining height of hard coal,the strong disturbance and high-efficiency caving mechanism is researched,a large volume coal flow transportation system is developed,a four-level crushing system and memory+remote intervention caving system are allocated,creating a safe and efficient intelligent fully mechanized caving face with active perception,automatic analysis,system coordination,which can provide basis for achieving an annual output of1.5 Mt in thick seam fully mechanized top-coal caving.

关 键 词:硬煤 超大采高综放 智能化开采 成套装备 

分 类 号:TD823[矿业工程—煤矿开采]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象