基于加权图方法的高炉过程故障检测  被引量:5

Fault detection based on the weight graph method in a blast furnace process

在线阅读下载全文

作  者:安汝峤 杨春节[1] 潘怡君[1,2] AN Ru-qiao;YANG Chun-jie;PAN Yi-jun(Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;Shenyang Institute of Automation Chinese Academy of Sciences,Shenyang 110016,China)

机构地区:[1]浙江大学控制科学与工程学院,浙江杭州310027 [2]中国科学院沈阳自动化研究所,辽宁沈阳110016

出  处:《高校化学工程学报》2020年第2期495-502,共8页Journal of Chemical Engineering of Chinese Universities

基  金:国家自然科学基金(61290321,61333007)。

摘  要:针对高炉炼铁过程的复杂性和时变性,以及观测值中包含异常值的问题,提出一种加权图的高炉过程故障检测方法以降低异常值的影响。采用基于图的突变点检测方法,考虑其具有无监督和非参数的优势。首先,根据加权的欧式距离利用最小生成树的方法得到连接图。然后,通过计算连接来自突变点前后两部分观测值的边数目作为统计量,实现故障检测。最后,利用数值仿真验证了算法的有效性,并在实际高炉过程中实施。结果表明,基于加权图方法,能够降低高炉过程中采集到数据矩阵中异常值的影响,提高故障检测的效果。Since industrial processes are in general complex,proposing robust fault detection and identification is an important task to ensure process safety.In this paper a weight graph based fault detection method is proposed to reduce the influence of the outliers in blast furnace process.The introduced fault detection method has the advantage of being unsupervised and non-parametric.In this method,first the minimum spanning tree of observations is constructed.The weights are calculated by Euclidean distances,and a parameter is introduced to remove the outliers.Next the number of edges,which connect the two observations derived from two group,are counted to detect the fault.The power of proposed method was illustrated through numerical simulation of a blast furnace process.The results show that the weighted graph method can reduce the influence of outliers collected in the data matrix during the blast furnace process and improve the effect of fault detection.

关 键 词:过程控制 高炉 加权图 故障检测 

分 类 号:TQ465.92[化学工程—制药化工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象