面向冲突证据的改进DS证据理论算法  被引量:33

An improved DS evidence theory algorithm for conflict evidence

在线阅读下载全文

作  者:张欢[1] 陆见光 唐向红[1,3] ZHANG Huan;LU Jianguang;TANG Xianghong(Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education,Guizhou University,Guiyang 550025,China;State Key Laboratory of Public Big Data,Guiyang 550025,China;College of Mechanical Engineering,Guizhou University,Guiyang 550025,China)

机构地区:[1]贵州大学现代制造技术教育部重点实验室,贵阳550025 [2]公共大数据国家重点实验室,贵阳550025 [3]贵州大学机械工程学院,贵阳550025

出  处:《北京航空航天大学学报》2020年第3期616-623,共8页Journal of Beijing University of Aeronautics and Astronautics

基  金:贵州省重大基础研究项目([2013]6019);贵州省留学回国人员科技活动择优资助项目(2018.0002);国家留学基金委项目(201806675013);贵州省公共大数据重点实验室开放基金(2017BDKFJJ019);贵州大学引进人才基金(贵大人基合字(2016)13号)。

摘  要:DS证据理论在处理不确定信息上的优势在各个领域得到广泛应用。针对传统DS(Dempster-Shafer)存在的证据冲突问题,提出了一种改进的DS证据理论算法。首先,结合皮尔逊相关系数的相关性限制和融合过程零因子的修正,较大程度上减少分配与整体非相关证据体的权值,修正证据体的整体重要程度;然后,按照修正后的基本概率分布(BPA)进行DS组合规则计算,得到融合结果。在解决常见冲突证据和证据体融合数量等方面与其他改进DS证据理论算法进行比较,所提算法收敛速度更快,融合的可信命题基本概率结果更高,因而验证了算法的有效性。The advantages of DS(Dempster-Shafer) evidence theory in dealing with uncertain information have been widely used in various fields. This paper proposes an improved DS evidence theory algorithm for the existence of evidence conflicts in traditional DS. Firstly,combined with the correlation limitation of Pearson correlation coefficient and the correction of zero factor of fusion process, the weight of distribution and the overall unrelated evidence body is greatly reduced, and the overall importance of the evidence body is corrected. Secondly, the DS combination rule calculation is performed to corrected basic probability assignment(BPA) to obtain the fusion result. Compared with the performance of other improved DS theory algorithms in solving common conflict evidence and the number of evidence body fusion, the proposed algorithm has faster convergence rate and higher fusion BPA on credible proposition, which proves the effectiveness of the proposed algorithm.

关 键 词:DS(Dempster-Shafer)证据理论 证据冲突 组合规则 信息融合 皮尔逊相关系数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象