检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈傲星 武靖 CHEN Ao-xing;WU Jing(School of Mathematics and Statistics,China Central Normal University,Wuhan 430079,China)
机构地区:[1]华中师范大学数学与统计学院,武汉430079
出 处:《湖北第二师范学院学报》2020年第2期16-19,共4页Journal of Hubei University of Education
摘 要:本文从“抛硬币实验”出发,激发对频率和概率关系的思考,得出随着试验次数的增加频率逐渐趋于概率的结论。这个结论被数学家伯努利用与抛硬币相类似的缶子模型所证明,后称为伯努利弱大数定律。而伯努利时代遗留下来的问题,试验次数无限时概率值可否用频率值替代,直到20世纪初才得以解决。波莱尔证明了其正确性,结论更强的大数定律由此诞生。随后,本文就更一般的强弱大数定律分别从直观意义和测度意义上展开了讨论。最后,基于经验分布函数给出了伯努利场合下强大数定律的应用。In this paper,the relation between frequency and probability is discussed by using the“coin experiment”.The conclusion drawn is that the value of frequency approaches the probability as the number of experiment increases.This was proved by James Bernoulli using a model similar to the“coin experiment”and known as Bernoulli’s Weak Law of Large Numbers later.However,there was a problem left:whether frequency and probability are equal under the infinite condition.It was not until the 1900’s that the problem was proved to be correct.Subsequently,Strong Law of Numbers and Weak Law of Numbers are compared in a more general condition in terms of intuition and measurement.And finally,application of the Strong Law of Numbers in Bernoulli case is given based on the empirical distribution function.
关 键 词:抛硬币实验 弱大数定律 强大数定律 经验分布函数的应用
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.147.211