基于CA-Markov和InVEST模型的土地利用格局变化对生境的影响研究--以北京浅山区为例  被引量:21

Study on the Impact of Landuse Pattern Changes on Habitat Based on Ca-Markov and InVEST Models--A Case Study of Shallow Mountainous Areas in Beijing

在线阅读下载全文

作  者:邹天娇 倪畅 郑曦[1] ZOU Tianjiao;NI Chang;ZHENG Xi

机构地区:[1]北京林业大学园林学院,北京100083

出  处:《中国园林》2020年第5期139-144,共6页Chinese Landscape Architecture

基  金:国家重点研发计划“村镇乡土景观绩效评价体系构建”(编号2019YFD11004021)资助。

摘  要:在城市扩张蔓延和由此引起的生境变化过程中,研究生境随土地利用/覆被变化(LandUse/CoverChange,LUCC)的适应性时空演变及预测已成为生态学的核心内容。浅山区作为山区与平原的过渡地带,是天然生态屏障和生态敏感地区,评估土地利用变化所引起的生境质量时空变化对于浅山生态规划意义重大。以北京市浅山区为例,基于1999、2017年的LandsatTM/ETM+遥感数据进行ENVI解译,并采用CA-Markov模型模拟北京浅山区2035年自然增长情景下的景观格局发展趋势。后结合In Vest模型,评价3个时间下的生境质量和退化度,以及1999-2017、2017-2035年时间段下的生境稀缺度。结果表明:1999-2017年,浅山区的景观空间愈加趋于碎片化,农田和建设用地趋于向浅山内部扩张,预测2017-2035年仍将沿袭这一趋势,但变化速度有所减缓。In the process of urban sprawl and the resulting habitat changes,the research on the spatial and temporal evolution and prediction of habitat adaptability with land use/cover change(LUCC)has become the core content of ecology.As the transition zone between mountain and plain,shallow mountainous area is a natural ecological barrier and ecologically sensitive area.Taking shallow mountainous areas of Beijing as an example,ENVI interpretation was conducted based on Landsat TM/ETM+remote sensing data in 1999 and 2017,and the CA-Markov model was used to simulate the development trend of landscape pattern in shallow mountainous areas of Beijing under the scenario of natural growth in 2035.Then,combined with the In Vest model,the habitat quality and degradation degree in three time periods were evaluated,as well as the habitat scarcity degree in two time periods of 1999-2017 and 2017-2035.The results show that from 1999 to 2017,landscape space in shallow mountains tends to be more fragmented and farmland and construction land tend to expand into shallow mountains.It is predicted that this trend will continue in 2017-2035,but the change rate will slow down.

关 键 词:风景园林 生境质量 退化度 稀缺度 CA-Markov模型 InVEST模型 

分 类 号:TU986[建筑科学—城市规划与设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象