检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐作栋 龚晓峰[1] 雒瑞森 TANG Zuo-dong;GONG Xiao-feng;LUO Rui-sen(College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
出 处:《计算机工程与科学》2020年第5期902-909,共8页Computer Engineering & Science
基 金:校企合作项目(17H1199,19H0355)。
摘 要:针对当前通信信号的制式识别算法在低信噪比情况下识别不准确的问题,提出一种新的小波特征与改进的深度神经网络结合(WL-DNN)的识别算法。该算法将生成的10种{2ASK、4ASK、2PSK、4PSK、2FSK、4FSK、OFDM、16QAM、AM、FM}含有高斯白噪声的通信信号,用小波分解重构算法提取出一类新的小波特征参数。本文测试了含有多层隐含层的改进BP神经网络作为分类器,利用弹性反向传播算法训练神经网络的参数,确定神经网络的最优超参数。仿真结果表明:在信噪比低至0 dB的情况下,单个调制信号最低识别率超过95%,平均识别率超过98%,大幅提高了制式识别在低信噪比下的识别率,由此表明了该算法的有效性和正确性。Aiming at the problem of inaccurate recognition of current communication signals in low signal-to-noise ratio(SNR),a recognition algorithm combining wavelet feature and depth neural network is proposed.This method generates 10 kinds of common communication signals with Gauss white noise{MASK,MPSK,MFSK,OFDM,16QAM,AM,FM}.A new kind of wavelet characteristic parameters are extracted from the signals by using the wavelet decomposition and reconstruction algorithm.The improved BP neural network with plenty hidden layers is studied and tested as classifier.The parameters of the neural network are trained by the elastic back propagation algorithm.The optimal layers of the neural network are determined by the identification results.The simulation results show that the minimum recognition rate of single modulated signals is more than 95%and the average recognition rate is more than 98%,when the signal-to-noise ratio is as low as 0 dB,which greatly improves the recognition rate of standard recognition under low signal-to-noise ratio,thus proving the effectiveness and practicability of this method.
分 类 号:TN91[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.19.165