离散布谷鸟算法的建筑能耗数据智能监测系统  被引量:6

Building energy consumption data intelligent monitoring system based on discrete cuckoo algorithm

在线阅读下载全文

作  者:贾政方 贾宏俊[1] JIA Zhengfang;JIA Hongjun(Department of Resources and Civil Engineering,Shandong University of Science and Technology at Taian,Taian 271000,Shandong,China)

机构地区:[1]山东科技大学泰安校区资源与土木工程系,山东泰安271000

出  处:《西安工程大学学报》2020年第2期110-116,共7页Journal of Xi’an Polytechnic University

基  金:山东省自然科学基金(18ZA0239)。

摘  要:针对传统的建筑能耗数据监测系统存在的监测指令传输周期长、监测数据连接精准性差的问题,引入离散布谷鸟算法对建筑能耗数据进行监测。根据离散型监测拓扑结构布置建筑能耗数据采集器并设置智能传输结构,利用离散布谷鸟算法解码建筑能耗数据,实现监测数据库的搭建。建立本地存储、集中式存储、分布共享式存储3种储存模式,通过定点连接处理配置指令传输过程所需的监测节点。实验发现应用该监测系统后,监测指令的传输周期平均值为8.2 s,建筑能耗数据连接精准性最大可达到92%。结果表明:与传统监测系统相比,离散布谷鸟算法的监测系统有效提高了对建筑能耗数据的监测效果。In view of the problems of the traditional building energy consumption data monitoring system,such as long monitoring instruction transmission cycle and poor accuracy of monitoring data connection,the discrete cuckoo algorithm is introduced to monitor the building energy consumption data.The data acquisition unit of building energy consumption is arranged according to the discrete monitoring topology and the intelligent transmission structure is set,the discrete cuckoo algorithm is used to decode the building energy consumption data,so as to realize the construction of monitoring database,and establish three storage modes,namely local storage,centralized storage and distributed and Shared storage,to process the monitoring nodes needed in the configuration instruction transmission process through fixed-point connection.The experiment found that after the application of the monitoring system,the average transmission cycle of monitoring instructions was 8.2 s,and the maximum accuracy of data connection of building energy consumption was 92%.The results show that compared with the traditional monitoring system,the monitoring system based on discrete cuckoo algorithm can effectively improve the monitoring effect of building energy consumption data.

关 键 词:离散布谷鸟算法 建筑能耗数据 监测系统 数据采集器 数据解码 节点配置 传输周期 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象