检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯丽云 张旭[1] 吴珍 HOU Li-yun;ZHANG Xu;WU Zhen(School of Mathematics and Statistic,Southwest University,Chongqing 400715,China)
出 处:《西南师范大学学报(自然科学版)》2020年第5期98-102,共5页Journal of Southwest China Normal University(Natural Science Edition)
基 金:国家自然科学基金项目(11701471);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0476).
摘 要:通过MA图和箱线图比较归一化前后miRNA微阵列数据分布情况的变化,用K-S检验和均方误差来评估6种归一化方法的优良性.结果显示,对于miRNA微阵列数据而言,局部加权回归方法和分位数归一化方法比其它方法效果更好,其中又以局部加权回归方法的效果最佳.Detecting the level of miRNA in cells with microarray has become a widely used technology.There are many normalization methods for microarray of miRNA.Different normalization methods have different effects on microarray data of miRNA.In this paper,six normalization methods for microarray data of Agilent platform have been studied,including global normalization,locally weighted regression method,quantile normalization,trimmed mean method,variance stabilizing normalization and scale normalization.And the distribution changes of miRNA microarray data have been presented and compared before and after normalization by drawing MA plots and box plots.The six normalization methods have also been evaluated by Kolmogorov-Smirnov statistic and mean square error.The result shows that the locally weighted regression method and quantile normalization method are better than other methods for miRNA microarray data,and the locally weighted regression method is the best.
关 键 词:miRNA微阵列数据 归一化方法 MA图 K-S检验 均方误差
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.139.201