检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段中山 龚朋彬 袁伟 过惠平 罗永锋 罗昆升 DUAN Zhongshan;GONG Pengbing;YUAN Wei;GUO Huiping;LUO Yongfeng;LUO Kunsheng(Rocket Force University of Engineering,Xi’an 710025,Shaanxi,China;Teaching and Research Secition of Environmental Engineering,Army Logistic University of PLA,Chongqing 401331,China;The Institute of The Rocket Force,Beijing 100094,China)
机构地区:[1]火箭军工程大学核工程学院,陕西西安710025 [2]中国人民解放军陆军勤务学院环境工程教研室,重庆401331 [3]火箭军研究院,北京100094
出 处:《爆炸与冲击》2020年第5期112-120,共9页Explosion and Shock Waves
基 金:国家高技术研究发展计划(863计划)(2012AA063501)。
摘 要:为获取不同风场下TNT爆炸烟云扩散时空分布规律与高度变化模型,本文理论描述了爆炸烟云扩散过程与机理,开展了不同水平风速下烟云扩散的计算流体力学(computational fluid dynamics, CFD)仿真和外场时空分布实验,建立了不同水平风速下烟云高度随时间变化模型及烟云最终高度计算模型,分析了烟云扩散过程中形态、温度、密度、速度变化规律。研究结果显示:CFD方法仿真烟云分布结果与实验结果基本一致,大气稳定且无风条件下烟云高度随时间呈指数0.5的幂函数关系,最终高度与爆炸当量可拟合为指数0.47的幂函数模型;水平风会加快烟云与空气混合的速度,导致幂函数模型中指数参数随风速变大而呈线性减小规律,风速越大烟云上升速度衰减越快、上升时间越短、最终高度越低。In order to obtain the spatial and temporal distribution law and height variation model of TNT explosion cloud diffusion under different wind Fields, this paper theoretically describes the diffusion process and mechanism of the explosion cloud, and carries out the computational fluid dynamics(CFD) simulation and the field-time distribution experiment of the cloud diffusion under different horizontal wind speeds, and analyzes the diffusion process of the cloud. Morphology,temperature, density and speed change law were established, and the variation model of cloud height with time at different uwind speeds and the final height calculation model of cloud were established. The results show that the CFD method simulation cloud diffusion results are consistent with the experimental results. The cloud height has a power function with an exponent of 0.5 under windless conditions. The final height and explosive equivalent can be fitted to a power function model with an index of 0.47. The horizontal wind will speed up the mixing of the cloud and the air, causing the exponential parameter of the power function model to decrease linearly with the wind speed becoming larger. The higher the wind speed, the faster the decay rate of the cloud, the shorter the rise time, and the lower the final height.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91