检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊涛 王素娟 林晓明 刘祚时[1] 谭俭辉 宋丹 LIU Juntao;WANG Sujuan;LIN Xiaoming;LIU Zuoshi;TAN Jianhui;SONG Dan(College of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China;Guangdong Shunde Innovation Design Institute,Shunde,Guangdong 528311,China;College of Automation,Guangdong University of Technology,Guangzhou 510006,China;College of Information Science and Engineering,Guilin University of Technology,Guilin,Guangxi 541006,China)
机构地区:[1]江西理工大学机电工程学院,江西赣州341000 [2]广东顺德创新设计研究院,广东顺德528311 [3]广东工业大学自动化学院,广州510006 [4]桂林理工大学信息科学与工程学院,广西桂林541006
出 处:《计算机工程与应用》2020年第11期192-199,共8页Computer Engineering and Applications
基 金:2018年广东省科技创新战略专项资金(No.2018FS05020102)。
摘 要:眼底图像中渗出物是构成糖尿病视网膜病变(Diabetic Retinopathy,DR)的早期症状之一,提出一种结合模糊C-均值(Fuzzy C-Means,FCM)聚类和边缘感知模型的方法实现对渗出物的检测。为保证后期检测精度和效率,对眼底图像进行增强对比度和均衡亮度等预处理操作,用FCM聚类分割出渗出物候选区域,利用基于判断邻域灰度差异的边缘感知模型对候选区域进行筛选,通过移除视盘区域,从而得到真实的渗出物区域。在公开的数据集上进行实验,算法的灵敏度为86.65%,特异性为94.79%,阳性预测值为95.14%,准确度为92.09%。结果表明,该方法能够有效实现对眼底渗出物的自动检测。Exudates in the fundus image is one of the early symptoms of Diabetic Retinopathy(DR),a method for detecting exudates by combining Fuzzy C-Means(FCM)clustering and edge-aware model is proposed.In order to ensure the accuracy and efficiency of post-detection,the fundus image is firstly subjected to preprocessing such as enhanced contrast and equalized brightness,and then the exudates candidate region is segmented by FCM clustering,after that the candidate is determined by the edge-aware model based on the judgment of neighborhood grayscale difference.Finally,the real exudates area is obtained by removing the optic disc area.The approach is evaluated on the public fundus image data set,the sensitivity of the algorithm is 86.65%,the specificity is 94.79%,the positive predictive value is 95.14%,and the accuracy is 92.09%.The results show that the method can effectively realize the automatic detection of the fundus exudates.
关 键 词:渗出物检测 图像预处理 模糊C均值聚类 边缘感知模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30