人员密集场所拥挤踩踏事故风险分级模型及预防对策  被引量:7

Analysis on Risk Classification Model and Prevention Countermeasures for Stampede Accident in Crowded Places

在线阅读下载全文

作  者:孙贵磊[1] 颜峻[1] 孟燕华[1] 刘倩 季学伟 SUN Guilei;YAN Jun;MENG Yanhua;LIU Qian;JI Xuewei(China University of Labor Relations,Department of Safety Engineering,Beijing 100048,China;Beijing Academy of Safety Science and Technology,Beijing 100070,China)

机构地区:[1]中国劳动关系学院安全工程系,北京100048 [2]北京市安全生产科学技术研究院,北京100070

出  处:《安全》2020年第5期26-33,共8页Safety & Security

基  金:北京市重大危险源分类辨识研究(BJAKY-2017-004);中国劳动关系学院一般项目(20XYJS020)。

摘  要:为研究人员密集场所拥挤踩踏事故的影响因素及拥挤踩踏事故风险级别与管控措施,通过统计分析2002-2018年间国内不同场所发生的拥挤踩踏事故原因,构建事故树模型,从人的因素、道路因素、环境因素、管理因素4个方面提出人员密集场所拥挤踩踏事故的20个评价指标,建立踩踏事故风险评价指标体系,基于层次分析法对评价指标赋予权重,进而构建RCM-CS模型,并依据模型对事故风险进行分级评估。通过RCM-CS模型对已发生的踩踏事故风险等级评估发现,该模型可以很好的区分不同场所的拥挤踩踏风险等级,对于预测人员密集场所风险级别及预防拥挤踩踏事故的发生具有重要作用。In order to investigate the influencing factors of crowded and trampling accidents in crowded places and the risk level and control measures of crowded stampede accidents,the causes of crowded stampede accidents in different places were analyzed from 2002 to 2018 in China and the Fault Tree was constructed.20 evaluation indicators of crowded and trampled accidents in crowded places were proposed from the four aspects:human factors,road factors,environmental factors and management factors and a risk evaluation index system for stamping accidents was established.Based on the analytic hierarchy process,weights were given to the evaluation indicators.The risk classification model of crowded stampede(RCM-CS)was used to evaluate the risk of crowded places.The RCM-CS model can be used to distinguish the risk level of crowded stampede in different places.It can play an important role in predicting the risk level of crowded places and preventing the occurrence of crowded stampede accidents.

关 键 词:RCM-CS模型 风险评估 拥挤踩踏 事故树 层次分析法 

分 类 号:X913[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象