Minimum Control Energy of Spatial Beam with Assumed Attitude Adjustment Target  被引量:7

在线阅读下载全文

作  者:Weipeng Hu Lingjun Yu Zichen Deng 

机构地区:[1]School of Civil Engineering and Architecture,Xi’an University of Technology,Xi’an 710048,China [2]State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China,Xi’an University of Technology,Xi’an 710048,China [3]Department of Aeronautical Machinery Engineering of Army Aviation Institute,Beijing 101123,China [4]School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi'an 710072,China

出  处:《Acta Mechanica Solida Sinica》2020年第1期51-60,共10页固体力学学报(英文版)

基  金:The research is supported by the National Natural Science Foundation of China(11672241,11972284,11432010);Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29);Fund of the Youth Innovation Team of Shaanxi Universities,the Seed Foundation of Qian Xuesen Laboratory of Space Technology,and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ1605).

摘  要:The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.

关 键 词:Spatial beam Structure-preserving method Generalized multi-symplectic Minimum control energy HAMILTONIAN 

分 类 号:O32[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象