一种基于源端数据重删的数据备份和恢复系统设计与实现  被引量:14

Source Deduplication-based Data Backup and Recovery System

在线阅读下载全文

作  者:王兴虎 何安元[2] Wang Xinghu;He Anyuan(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Informationization Technology Center,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学计算机科学与技术学院,江苏南京211106 [2]南京航空航天大学信息化技术中心,江苏南京211106

出  处:《南京师大学报(自然科学版)》2020年第2期131-139,共9页Journal of Nanjing Normal University(Natural Science Edition)

摘  要:针对当前源端数据重删技术中,数据重删效率低、计算指纹耗时长以及频繁操作数据库耗时的问题,设计并实现了一种采用基于源端数据重删技术的数据备份与恢复系统.系统通过在客户端预先将数据流进行分段并采用预处理环形队列进行存储,基于可变分块对数据段进行分块,整个处理过程并发执行,因此该预处理并发计算模块有效缩短了计算时间,而服务端通过用容器存放临近的数据块与索引信息,设计以容器为单位的多级缓存,明显提高缓存命中率.此外,通过使用布隆过滤器与多级缓存减少了数据库的操作频率.仿真实验表明该系统能有效提高数据备份与恢复效率.In order to solve the existing problems of the current source deduplication technology,which is low efficiency of data deduplication,time-consuming fingerprints calculation and frequent requests to the database operation,we design a source deduplication-based data backup and recovery system in this paper. By pre-segmenting the data stream,applying the pre-processed circular queue for storage and segmenting the data block by content-defined chunking at the client,the entire processing process is executed concurrently. The pre-processing concurrent computing module effectively shortens the calculation time. The server stores the adjacent data block and index information by the container and the multi-level caches. The container and multi-level caches are designed in the unit of container,which obviously improves the cache hit rate. Furthermore,the frequent access to the database is optimized by using Bloom filters and multi-level caches. Experimental results show that the system can effectively improve the efficiency of data backup and recovery.

关 键 词:源端数据重删 备份与恢复效率 预处理并发计算 多级缓存 数据备份与恢复系统 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象