检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王怀军[1,2,3] 潘莹萍 冯如 肖明贤 WANG Huaijun;PAN Yingping;FENG Ru;XIAO Mingxian(School of Urban and Environmental Sciences,Huaiyin Normal University,Huaian 223300,China;State Key Laboratory of Hydrology-water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Research Center for Climate Change,Ministry of Water Resources,Nanjing 210029,China;Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China)
机构地区:[1]淮阴师范学院城市与环境学院,江苏淮安223300 [2]南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京210029 [3]南京水利科学研究院水利部应对气候变化研究中心,南京210029 [4]北京师范大学地理科学学部,北京100875
出 处:《灌溉排水学报》2020年第5期102-110,共9页Journal of Irrigation and Drainage
基 金:国家重点研发计划项目(2018YFC1508101);国家自然科学基金项目(41701034);江苏省区域现代农业与环境保护协同创新中心科技项目(HSXT2-324)。
摘 要:[目的]验证空间贝叶斯层次模型在极端气候事件当中建模的适用性,探明淮河流域极端气候事件的空间分布规律。[方法]基于空间贝叶斯层次模型,将经度、纬度与海拔作为模型协变量捕捉气候极值的空间变化特征。在建模过程中,将广义极值函数(GEV)作为其边际分布,采用马尔可夫链蒙特卡罗算法(MCMC)确定空间极值模型所需的参数值。选用淮河流域1960-2015年日最大降水量(RX1day)、日最高气温(TXx)作为极端气候变量进行建模,将模型结果按站点提取,并与基于GEV的站点结果进行对比。[结果]空间贝叶斯层次模型能够很好地模拟淮河流域气候极值,模型结果的参数及各重现水平与直接基于站点数据的GEV分析相近。RX1day不同重现水平从流域西北向东南增加;TXx不同重现水平具有典型的经向地带性,从流域东部往西部增加。[结论]研究建立的空间极值模型可以获得没有观测台站所在位置的极端气候重现水平,该结果拓展了淮河流域极端气候事件时空规律研究。[Objective]The objective of this paper is to test the feasibility of using spatial Bayesian hierarchical model to estimate the spatiotemporal change in extreme climate events in the Huai river Basin.[Method]The hierarchical Bayesian spatial model, HKEVP, was used to capture the spatial variation in extreme climates indexes, with the longitude and transverse coordinates and its associated latitude as independent variables and the generalized extreme value distribution(GEV) as the marginal distribution. We first calculated the parameters in the model using the Markov Chain Monte Carlo method(MCMC) and then applied the model to analyze the maximum daily precipitation(RX1 day) and highest daily temperature(TXx) in each month from 1960-2015. The GEV parameters and the return level derived from the model were compared to those calculated from the maximum likelihood estimates.[Result]The hierarchical Bayesian model was adequate for estimating the GEV parameters for locations without observation, and the RX1 day return level at different return periods increased from northwest to southeast in the basin. The return level of TXx was longitudinally zonal and its value was lower in the east than in the west.[Conclusion]The proposed spatiotemporal model for estimating extreme climate indexes is able to obtain the return levels of the extreme values at ungauged station, and the results improved our understanding of the spatiotemporal change in extreme climate indexes in Huai River Basin.
分 类 号:P467[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.249.217