含磁场耦合忆阻神经网络放电行为研究  被引量:1

Research on Firing Behavior of Magnetic Field Coupled Memristive Neural Network

在线阅读下载全文

作  者:李雅岱 韦笃取[1] LI Yadai;WEI Duqu(College of Electronic Engineering,Guangxi Normal University,Guilin Guangxi 541004,China)

机构地区:[1]广西师范大学电子工程学院,广西桂林541004

出  处:《广西师范大学学报(自然科学版)》2020年第3期19-24,共6页Journal of Guangxi Normal University:Natural Science Edition

基  金:国家自然科学基金(11562004);广西研究生教育创新计划(XYCSZ20200052,XJGY2020002)。

摘  要:本文研究复杂神经网络的连接拓扑和耦合强度对其放电行为的影响,以含磁场耦合忆阻Hodgkin-Huxley(HH)神经元为节点,以神经元之间的连接为边,建立Newman-Watts(NW)型小世界神经网络,并通过改变连接拓扑概率和耦合强度研究神经网络放电模式。研究发现:对于一个给定的耦合强度,当连接拓扑概率接近于零时,神经网络没有放电行为;当连接拓扑概率大于阈值时,网络中的神经元会出现放电现象,而且随着连接拓扑概率p的进一步增大,放电强度变得更大。研究结果表明,连接拓扑概率p可以诱导和增强神经网络的电活动,可望为理解真实耦合神经元的集群动力学提供有益的见解。In this paper,the influence of the connection topology and coupling strength of complex neural networks on their firing behavior is studied.Firstly,a Newman-Watts small world neural network is established by using magnetic field-coupled memristive Hodgkin-Huxley(HH)neurons as nodes and taking the connections between neurons as edges.Then the firing modes of neural network are studied by changing the connection topology probability and coupling strength.It is found that for a given coupling strength,when the connection topology probability is close to zero,the neural network has no firing behavior;while the connection topology probability is larger than the threshold,the neurons in the network will have a discharge phenomenon.As the connection topology probability p further increases,the firing intensity becomes larger.The results show that the connection topology probability p can induce and enhance the electrical activity of the neural network.It is expected that this reseach can provide useful insights into understanding the collective dynamics of real coupled neurons.

关 键 词:Hodgkin-Huxley神经网络 忆阻器 放电行为 Newman-Watts小世界 

分 类 号:O317[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象