基于GM-CPHD的海面目标跟踪算法  被引量:3

Tracking Algorithm of Sea Surface Targets Based on GM-CPHD Filter

在线阅读下载全文

作  者:张世仓 吴良斌 胡新梅 ZHANG Shicang;WU Liangbin;HU Xinmei(Leihua Electronic Research Institute of AVIC,Wuxi 214063,China)

机构地区:[1]中国航空工业集团公司雷华电子技术研究所,江苏无锡214063

出  处:《现代雷达》2020年第4期28-32,共5页Modern Radar

摘  要:由于海面目标个数多、密集、进出雷达视野随机变化性强,而且杂波密度高,目标速度模糊等原因导致机载雷达跟踪性能下降。文中提出了基于随机集理论框架下的海面目标跟踪算法。首先,设计了基于LDL分解的高斯混合势概率假设密度(GM-CPHD)滤波算法用来降低算法的计算量;接着,提出了融入径向速度的目标跟踪算法来提高海面目标跟踪性能;最后,设计了仿真示例。仿真结果表明:该算法在提高跟踪性能的同时可以减少20%的计算量。The characteristics of random variant,high number,heavy clutter and heavy target density make difficult for airborne radar tracking in the scenario of air-to-sea targets tracking.A tracking algorithm is proposed in order to solve this problem.Gaussian mixture cardinality probability hypothesis density(GM-CPHD)filter algorithm based on LDL decomposition which called LDL-GMCPHD filter is presented to reduce complexity firstly,and a tracking algorithm with Doppler radius is designed to improve performance secondly.Numerical example is also given in the manuscript lastly and the simulation results show that the proposed tracking algorithm can track sea surface moving multi-target with superior performance while 20%degraded computation.

关 键 词:高斯混合势概率假设密度滤波器 LDL分解 海面目标跟踪 速度模糊 

分 类 号:TN959.7[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象