检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张俊艺 万鹏[1] 王明亮 张道强[1] ZHANG Junyi;WAN Peng;WANG Mingliang;ZHANG Daoqiang(College of Computer Science and Technology,Nanjing Universsity of Aeronautics and Astronautics,Nanjing,211106,China)
机构地区:[1]南京航空航天大学计算机科学与技术学院,南京211106
出 处:《数据采集与处理》2020年第3期411-419,共9页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(61876082,61861130366)资助项目;国家重点研发计划(2018YFC2001602)资助项目。
摘 要:融合来自多个中心的医学数据能够增加样本数量,有助于研究自闭症谱系障碍(Autism spectrum disorder,ASD)的病理变化。因此,如何有效地利用多中心数据,提高对ASD诊断的准确性受到了越来越多的关注。然而,以往的大部分研究忽略了多中心数据的异质性(如受试者群体和扫描参数的不同),这可能会降低模型在多中心数据上对疾病诊断的性能。为了解决这一问题,提出一种基于联合分布最优传输(Joint distribution optimal transport,JDOT)的领域自适应模型鉴别ASD。选择一个中心作为目标域,其余的中心作为源域,假设两个域的联合特征、标签空间分布之间存在非线性映射,利用最优传输方法交替优化传输矩阵和分类器。结果表明,在多中心静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-fMRI)数据上,该模型能够有效提高对ASD鉴别的准确性。Effective fusion of medical data from multiple autism research centers contributes to the diagnosis of autism spectrum disorder(ASD),as large multi-site datasets increase the sample size,which facilitates the investigation of the pathological process of ASD.However,the existing methods generally ignore the heterogeneity(i.e.,caused by subject populations and different scanning parameters)among diverse data sites,which degrades the effectiveness of model in ASD diagnosis based on multi-site datasets.To address this issue,we propose a novel domain adaptation method for ASD diagnosis based on joint distribution optimal transport(JDOT).Specifically,we alternately treat one site as target domain,and the rest are sources.Afterwards,we perform alignment in source-target domain by seeking a probabilistic coupling between joint feature and label distributions using optimal transport,which is optimized by an alternative minimization approach.Experimental results demonstrate the effectiveness of our method in ASD diagnosis based on multi-site resting-state functional magnetic resonance imaging(rsfMRI)datasets.
关 键 词:自闭症谱系障碍 联合分布 领域自适应 多中心 最优传输
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.83.143