二维小波提升-DCT变换对地电场压缩算法  被引量:3

Compression algorithm for electric field data based on two-dimensional lifting wavelet-discrete cosine transform

在线阅读下载全文

作  者:顾涛 GU Tao(School of Computing,North China Institute of Science and Technology,Yanjiao 065201,China)

机构地区:[1]华北科技学院计算机学院,河北燕郊065201

出  处:《计算机工程与设计》2020年第6期1652-1657,共6页Computer Engineering and Design

基  金:中央高校基本科研业务费专项资金基金项目(3142015024);河北省物联网监控工程技术研究中心基金项目(3142016020)。

摘  要:为解决10KV架空线路对地电场值海量存储问题,提出一种基于二维小波提升-DCT变换对地电场值压缩算法。将一维对地电场采样值按128×128方阵构成数据块。采用haar小波提升,对该数据块做一层小波分解,得到4个64×64数据块;用二维DCT矩阵对每个64×64数据块变换处理,利用筛选矩阵对DCT系数和小波系数进行筛选;对筛选系数进行一维小波变换编码,完成数据压缩。合理构造筛选系数,可以达到1024∶1高压缩比数据压缩效果。扩大原始数据块大小,压缩比可以达到更高。将其仿真结果与其它算法进行比较,验证了该算法数据压缩的有效性。To solve the problem of massive storage of ground-electric field data sampled from 10KV overhead lines,a compression algorithm of ground electric field value based on two-dimensional lifting wavelet-discrete cosine transform was proposed.One-dimensional sampled data of electric field were composed into data blocks by 128×128 matrixes.Every data block was decomposed into one layer wavelet coefficients by using haar wavelet lifting,and four 64×64 data blocks were obtained.The two-dimensional discrete cosine transform was used to transform each 64×64 data block.DCT coefficients and wavelet coefficients were screened using screening matrix.The reserved coefficients were coded through one-dimensional wavelet transform and data compression was completed.While the screening coefficients are reasonably constructed,the high compression ratio of sampled data achieves 1024∶1.The compression ratio can be higher by enlarging the size of the original data block.The results of simulation,which are compared to other well-known algorithms,indicate that the proposed algorithm is excellent for data compression.

关 键 词:对地电场值 小波提升 DCT变换 数据压缩 数据恢复 压缩比 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象