基于ARRB模型的交叉口多目标信号配时优化研究  被引量:4

Multi-objective Optimization Research on Intersection Signal Timing Based on ARRB Model

在线阅读下载全文

作  者:吴颢 焦钰博 彭其渊[3] WU Hao;JIAO Yu-bo;PENG Qi-yuan(The Smart City Research Institute of China Electronics Technology Group orporation,Shenzhen 518000,China;Xuzhou Traffic Planning and Design Institute,Xuzhou 221000,China;School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China)

机构地区:[1]中电科新型智慧城市研究院有限公司,深圳518000 [2]徐州市交通规划设计研究院,徐州221000 [3]西南交通大学交通运输与物流学院,成都611756

出  处:《交通运输工程与信息学报》2020年第2期139-147,共9页Journal of Transportation Engineering and Information

摘  要:城市交叉口交通拥堵和机动车尾气排放是近年来城市发展面临的重要问题,而信号配时优化是提高城市交通运行效率、缓解车辆因频繁起停而加剧尾气排放的有效手段之一。本文基于ARRB模型下的信号配时设计方法,综合考虑效率与环境的双重目标,研究不同停车次数惩罚系数下的信号配时方案。同时,以成都市某大型十字交叉口为验证实例,结合VISSIM计算仿真,分析了交通延误、停车次数与排放、油耗的影响关系,继而得到了综合最优的停车次数惩罚因子与配时方案。该方案使延误和停车次数平均提高了36.4%,排放及油耗平均降低了19.4%。Traffic congestion and vehicular exhausts in urban intersections are significant problems faced in the city development process.Signal timing optimization is one of the effective methods for improving traffic efficiency and reducing vehicular pollutions aggravated by frequent stop-and-go operational behaviors.Based on the Australian Road Research Board(ARRB)signal timing method,this study investigates signal timing schemes under different stop penalties considering both traffic efficiency and environment performance.A typical intersection in Chengdu is chosen as a verification example.VISSIM is applied to perform the calculations and the simulations.In this manner,the inter-relationship of traffic delay,stops,vehicular emissions,and fuel consumptions is fully analyzed.Moreover,the optimal stop penalty and the signal timing scheme are finally determined.This optimal scheme leads to 36.4%traffic efficiency improvement and 19.4%reduction of emissions and fuel consumptions.

关 键 词:信号配时 ARRB模型 停车次数惩罚系数 延误 排放及油耗 

分 类 号:U491.51[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象