Biomedical Named Entity Recognition Based on Self-supervised Deep Belief Network  被引量:1

在线阅读下载全文

作  者:ZHANG Yajun LIU Zongtian ZHOU Wen 

机构地区:[1]Shanghai Institute of Precision Measurement and Test,Shanghai 201109,China [2]School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China

出  处:《Chinese Journal of Electronics》2020年第3期455-462,共8页电子学报(英文版)

基  金:This work is supported by the National Natural Science Foundation of China(No.61305053,No.61273328,No.71203135).

摘  要:Named entity recognition is a fundamental and crucial issue of biomedical data mining.For effectively solving this issue,we propose a novel approach based on Deep belief network(DBN).We select nine entity features,and construct feature vector mapping tables by the recognition contribution degree of different values of them.Using the mapping tables,we transform words in biomedical texts to feature vectors.The DBN will identify entities by reducing dimensions of vector data.The extensive experimental results reveal that the novel approach has achieved excellent recognition performance,with 69.96%maximum value of F-measure on GENIA 3.02 testing corpus.We propose a self-supervised DBN,which can decide whether to add supervised fine-tuning or not according to the recognition performance of each layer,can overcome the errors propagation problem,while the complexity of model is limited.Test analysis shows that the new DBN improves recognition performance,the Fmeasure increases to 72.12%.

关 键 词:Biomedical named entity recognition Feature selection Feature vector mapping Threshold judgement Self-supervision 

分 类 号:R318[医药卫生—生物医学工程] TP391.1[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象