检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘仁俊 孙兆辉 张莉 程光 明新国[1] LIU Renjun;SUN Zhaohui;ZHANG Li;CHENG Guang;MING Xinguo+(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;INESA Display Materials Co.,Ltd.,Shanghai 201108,China)
机构地区:[1]上海交通大学机械与动力工程学院,上海200240 [2]上海仪电显示材料有限公司,上海201108
出 处:《计算机集成制造系统》2020年第5期1151-1161,共11页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金重点资助项目(71632008);航空发动机及燃气轮机重大专项基础研究资助项目(2017-I-0007-0008,2017-I-0011-0012)。
摘 要:为了完成复杂工艺彩色滤光片产线的故障定位问题,提出一种将加工过程数据和机台警报融合分析的故障定位模型。在该模型中,基于缺陷类型和面积权重评分确定多缺陷共存时的滤光片主缺陷标签,通过Xgboost集成方法训练加工过程数据与缺陷的关联模型,以信息熵增益确定各个过程数据源的贡献度;基于K-means聚类机台警报划分各个故障问题子集,以警报来源反推机台故障概率,进而以D-S证据理论融合两者进行判断,确定综合问题机台概率。通过实例验证了该方法的有效性。To solve the problem of failure location in complex-process colour filter production line,a failure-locating model combining both processing data and machine alarm for fusion analysis was proposed.In this model,the main defect label of the filter under multi-defect coexistence was determined based on the defect type and the area weight score;the correlation model between processing data and defect were trained with Xgboost integration method,and the contribution of each process data source was further calculated by information entropy gain.Based on the k-means clustering method,machine alarm was divided into several problem subsets,and the probability of machine failure was backward reasoning by alarm source.Then the Dempster-Shafer evidence theory was used to combine the above two judgments to determine the comprehensive probability of the failure machine.The effectiveness of the model was demonstrated by an industrial example.
关 键 词:故障机台定位 过程数据分析 集成模型 信息融合 彩色滤光片
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3