检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘丽丽 周绍光[1] 丁倩 赵婵娟 LIU Lili;ZHOU Shaoguang;DING Qia
机构地区:[1]河海大学地球科学与工程学院,江苏南京211100
出 处:《地理空间信息》2020年第5期20-25,I0005,共7页Geospatial Information
基 金:国家自然科学基金资助项目(41271420/D010702)。
摘 要:高光谱影像中的标记样本往往有限,即使利用大量的训练样本,分类结果也会出现大量斑点状的误分点。利用JSEG分割的方法生成了同质区,以获取大量未标记样本的标签,并在光谱特征的基础上进行了多特征提取,提高了类别辨识度;利用最大投票原则,对分类图和分割图进行融合,将分割斑块内的类别众数作为该斑块的类别。实验证明,最大投票融合的方法减少了斑块状的误分点,大大提高了分类精度。Marked samples in hyperspectral images are often limited,which poses a huge obstacle to their classification.Even with a large number of training samples,there will also be a lot of speckled misclassification points in the classification results.In this paper,we generated the homogenous region by using JSEG segmentation method to obtain a large number of unlabeled samples,and performed multi-feature extraction on the basis of spectral features to improve the class identification.And then,we used the principle of maximum voting to merge the classification map and the segmentation map,and took the category mode within the segmentation plaque as the category of the plaque.The experimental results show that the method of maximum voting fusion reduces the plaque-like misclassification points and greatly improves the classification accuracy.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170