检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhan Li Sheng-Ri Xue Xing-Hu Yu Hui-Jun Gao
机构地区:[1]Research Institute of Intelligent Control and Systems,Harbin Institute of Technology,Harbin 150001,China [2]Ningbo Institute of Intelligent Equipment Technology,Harbin Institute of Technology,Ningbo 315200,China
出 处:《International Journal of Automation and computing》2020年第3期417-427,共11页国际自动化与计算杂志(英文版)
基 金:This work was supported by National Key R&D Program of China(No.2018YFB1308404).
摘 要:The goal of this paper is to design a model-free optimal controller for the multirate system based on reinforcement learning.Sampled-data control systems are widely used in the industrial production process and multirate sampling has attracted much attention in the study of the sampled-data control theory.In this paper,we assume the sampling periods for state variables are different from periods for system inputs.Under this condition,we can obtain an equivalent discrete-time system using the lifting technique.Then,we provide an algorithm to solve the linear quadratic regulator(LQR)control problem of multirate systems with the utilization of matrix substitutions.Based on a reinforcement learning method,we use online policy iteration and off-policy algorithms to optimize the controller for multirate systems.By using the least squares method,we convert the off-policy algorithm into a model-free reinforcement learning algorithm,which only requires the input and output data of the system.Finally,we use an example to illustrate the applicability and efficiency of the model-free algorithm above mentioned.
关 键 词:Multirate system reinforcement learning policy iteration optimal control controller optimization
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15