On the convergence for PNQD sequences with general moment conditions  

在线阅读下载全文

作  者:XIAO Juan QIU De-hua 

机构地区:[1]School of Mathematics and Statistics,Hengyang Normal University,Hengyang 421008,China [2]School of Statistics and Mathematics,Guangdong University of Finance and Economics,Guangzhou 510320,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2020年第2期184-192,共9页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(No.11271161).

摘  要:Let fX;Xn;n≥1g be a sequence of identically distributed pairwise negative quadrant dependent(PNQD)random variables and fan;n1g be a sequence of positive constants with an=f(n)and f(θ^k)=f(θ^k-1)for all large positive integers k,where 1<θ≤βand f(x)>0(x≥1)is a non-decreasing function on[b;+1)for some b≥1:In this paper,we obtain the strong law of large numbers and complete convergence for the sequence fX;Xn;n≥1g,which are equivalent to the general moment conditionΣ∞n=1P(|X|>an)<1.Our results extend and improve the related known works in Baum and Katz[1],Chen at al.[3],and Sung[14].

关 键 词:pairwise negative quadrant dependent(PNQD)random variable strong law of large numbers complete convergence general moment condition 

分 类 号:O211.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象