检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:TANG Sheng-fang
机构地区:[1]Department of Statistics,School of Economics,Xiamen University,Xiamen 361005,China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2020年第2期220-243,共24页高校应用数学学报(英文版)(B辑)
基 金:Supported by the National Natural Science Foundation of China#71631004(Key Project);the National Science Fund for Distinguished Young Scholars#71625001;the scholarship from China Scholarship Council(CSC)under the Grant CSC N201806310088.
摘 要:This paper provides a selective review of the recent developments on econometric/statistical modeling in quantile treatment effects under both selection on observables and on unobservables.First,we discuss identification,estimation and inference of quantile treatment effects under the framework of selection on observables.Then,we consider the case where the treatment variable is endogenous or self-selected,for which an instrumental variable method provides a powerful tool to tackle this problem.Finally,some extensions are discussed to the data-rich environments,to the regression discontinuity design,and some other approaches to identify quantile treatment effects are also discussed.In particular,some future research works in this area are addressed.
关 键 词:average treatment effect ENDOGENEITY quantile treatment effect regression discontinuity design
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145