检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:QIN Jin-xia JIANG Yu-jie LU Yun-ze ZHAO Peng WU Bing-jin LI Hong-xia WANG Yu XU Sheng-bao SUN Qi-xin LIU Zhen-shan
机构地区:[1]State Key Laboratory of Crop Stress Biology for Arid Areas,College of Agronomy,Northwest A&F University,Yangling 712100,P.R.China [2]Department of Plant Genetics&Breeding,China Agricultural University,Beijing 100193,P.R.China [3]College of Landscape and Ecological Engineering,Hebei University of Engineering,Handan 056021,P.R.China
出 处:《Journal of Integrative Agriculture》2020年第7期1704-1720,共17页农业科学学报(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(31601304 and 31601305);the Shaanxi Natural Science Foundation,China(2017JQ3023);the Doctoral Scientific Research Foundation of Northwest A&F University,China(Z109021611 ,Z109021612).
摘 要:The Sugars Will Eventually be Exported Jransporter(SWEET)gene family,identified as sugar transporters,has been demonstrated to play key roles in phloem loading,grain filling,pollen nutrition,and plant-pathogen interactions.To date,the study of SWEET genes in response to abiotic stress is very limited.In this study,we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.We identified a total of 105 wheat SWEET genes,and phylogenic analysis revealed that they fall into five clades,with clade V specific to wheat and its closely related species.Of the 105 wheat SWEET genes,59%exhibited significant expression changes after stress treatments,including drought,heat,heat combined with drought,and salt stresses,and more up-regulated genes were found in response to drought and salt stresses.Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.Moreover,different phylogenetic clades also showed distinct response to abiotic stress treatments.Finally,we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
关 键 词:WHEAT sugar transporter abiotic stress homoeologous gene expression partitioning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171