基于深度学习的船用核动力管路系统故障诊断方法研究  被引量:4

在线阅读下载全文

作  者:颉利东 邬芝胜[1] 黄捷 王禹 曲自信 

机构地区:[1]中国核动力研究设计院核反应堆系统设计技术重点实验室,成都610213

出  处:《科技视界》2020年第15期37-40,共4页Science & Technology Vision

摘  要:针对船载核动力反应堆管路特征参数选取严重依赖人工经验和诊断准确率低的问题,本文引入机器学习的思想,提出了一种基于卷积神经网络的船载核动力反应堆管路故障诊断方法,以提高船载核动力反应堆管路故障诊断的智能化水平。首先使用卷积神经网络建立分类模型,并利用该模型对22类数据进行分类性能测试;然后提取反映管路运行状态的特征参数,输入深度学习分类器中进行诊断。使用现有管路故障诊断数据验证了本方法的实用性和有效性。In view of the Characteristic parameters for ship-borne nuclear reactor line selection relies heavily on the artificial experience and diagnose the problem of low accuracy,introducing the idea of machine learning,this paper proposes a ship nuclear power reactors based on convolution neural network line fault diagnosis methods,in order to improve the ship nuclear reactor line fault diagnosis of intelligent level.Firstly,a classification model is established by using conversational neural network,and the classification performance of 22 kinds of data is tested by this model.Then the characteristic parameters reflecting the running state of the pipeline are extracted and input into the deep learning classifier for diagnosis.The practicability and effectiveness of this method are verified by using the existing pipeline fault diagnosis data.

关 键 词:深度学习 船用核动力 管路系统 故障诊断 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象