检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Andrew Pensoneault Xiu Yang Xueyu Zhu
机构地区:[1]Department of Mathematics,University of Iowa,Iowa,IA 52246,USA [2]Department of Industrial and Systems Engineering,Lehigh University,Bethlehem,PA 18015,USA
出 处:《Theoretical & Applied Mechanics Letters》2020年第3期182-187,共6页力学快报(英文版)
基 金:supported by Simons Foundation;supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research as part of Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs)
摘 要:Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model.
关 键 词:Gaussian process regression Constrained optimization
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185