检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuan Guo Wei Chen Shi-Wei Jing 郭媛;陈炜;敬世伟(School of Computer and Control Engineering,Qiqihar University,Qiqihar 161006,China)
机构地区:[1]School of Computer and Control Engineering,Qiqihar University,Qiqihar 161006,China
出 处:《Chinese Physics B》2020年第5期243-253,共11页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant No.61872204);the Natural Science Fund of Heilongjiang Province,China(Grant No.F2017029);the Scientific Research Project of Heilongjiang Provincial Universities,China(Grant No.135109236);the Graduate Research Project,China(Grant No.YJSCX2019042).
摘 要:Traditional compressed sensing algorithm is used to reconstruct images by iteratively optimizing a small number of measured values.The computation is complex and the reconstruction time is long.The deep learning-based compressed sensing algorithm can greatly shorten the reconstruction time,but the algorithm emphasis is placed on reconstructing the network part mostly.The random measurement matrix cannot measure the image features well,which leads the reconstructed image quality to be improved limitedly.Two kinds of networks are proposed for solving this problem.The first one is ReconNet’s improved network IReconNet,which replaces the traditional linear random measurement matrix with an adaptive nonlinear measurement network.The reconstruction quality and anti-noise performance are greatly improved.Because the measured values extracted by the measurement network also retain the characteristics of image spatial information,the image is reconstructed by bilinear interpolation algorithm(Bilinear)and dilate convolution.Therefore a second network USDCNN is proposed.On the BSD500 dataset,the sampling rates are 0.25,0.10,0.04,and 0.01,the average peak signal-noise ratio(PSNR)of USDCNN is 1.62 dB,1.31 dB,1.47 dB,and 1.95 dB higher than that of MSRNet.Experiments show the average reconstruction time of USDCNN is 0.2705 s,0.3671 s,0.3602 s,and 0.3929 s faster than that of ReconNet.Moreover,there is also a great advantage in anti-noise performance.
关 键 词:compressed sensing deep learning bilinear interpolation dilate convolution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222