检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:原琳[1] 程海军[1] 赵凤贤[1] YUAN Lin;CHENG Haijun;ZHAO Fengxian(School of Electrical Engineering,Liaoning University of Technology,Jinzhou 121001,China)
出 处:《电源学报》2020年第3期168-174,共7页Journal of Power Supply
基 金:辽宁省教育厅资助项目(JQL201715408,JL201615407)。
摘 要:光伏PV(photovoltaic)阵列在实际应用中常存在遮挡现象,与光照均匀时的单峰特性不同,遮挡情况下的PV输出曲线呈多峰特性,常规的最大功率点跟踪方法大多寻找到第1个峰值点即停止搜索,易使光伏阵列因陷入局部极值点的跟踪而失效。提出一种基于自适应的果蝇优化算法AFOA(adaptive fruit fly optimization algorithm),对原有果蝇算法的初始值设定及寻优步长进行改进,并定时与扰动观察法P&O(perturb&observe)相结合,增强寻优算法的实时性。通过Matlab仿真,分别在光照均匀和遮挡情况下,与扰动观察法和粒子群优化PSO(particle swarm optimization)算法的跟踪效果进行了比较,仿真结果表明,无论有无遮挡现象,AFOA算法都可准确跟踪到系统的全局最大功率点,提高了系统输出功率的稳定性及发电效率。In practical applications,there is often a shaded phenomenon for a photovoltaic(PV)array,and the cor-responding PV output curve has multi-peak characteristics,which is different from those under uniform illumination.Mo-st of the conventional maximum power point tracking(MPPT)methods will stop after they have found the first peak,which will probably cause the PV array to fall into the local extreme point and further fail.An adaptive fruit fly optimization algorithm(AFOA)is proposed to improve the initial value set by the original fruit fly algorithm and the optimal step size as well.In addition,the perturb&observe(P&O)method is combined to improve the algorithm’s real-time capability.Thro-ugh Matlab simulations,the tracking results using AFOA are compared with those using the P&O and particle swarm optimization(PSO)algorithms under uniform illumination and occlusion,respectively.Simulation results show that the AFOA algorithm can accurately track the global maximum power point with or without occlusion,thus improving the system’s stability of output power and the power generation efficiency.
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229