检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mechanical Engineering and Automation,Beihang University,Beijing 100083,China
出 处:《Chinese Journal of Aeronautics》2020年第4期1329-1337,共9页中国航空学报(英文版)
基 金:supported by the Special Research on Civil Aircraft of China(No.MJZ-2017-J-96);the Equipment Pre-research Project of China(No.41423010401)。
摘 要:In the assembly process of large volume product,engineering constraints limit the relative pose of components and serve as a standard for judging assembly quality.However,in the traditional process of target pose estimation,a general method is needed for establishing the correlation between engineering constraints and product pose,and it is difficult to evaluate pose by constraints comprehensively.Therefore,the process of target pose estimation and evaluation is separated.In this paper,a pose coordination model based on multi-constraints is proposed,which includes pre-processing,pose estimation,pose adjustment and evaluation.Firstly,engineering constraints are decoupled into 4 types of Minimum Geometrical Reference Constraints(MGRC),and the inequalities for solving target pose are formulated.Then the Constraint Coordination Index(CCI)is defined as the optimization objective to solve the target pose.Finally,with CCI as the numerical index,the target pose is evaluated to illustrate the quality of assembly.Taking the simulation experiment of wing-fuselage jointing as an example,the external and internal parameters of model are analyzed,and the pose estimation based on multi-constraints reduces the CCI by 12%,compared with the point-set-registration method.
关 键 词:Large volume components Measurement assisted assembly MULTI-CONSTRAINTS Pose estimation Pose evaluation
分 类 号:V262.4[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222