检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:You LU Chong LI Zheng Ke MIAO
机构地区:[1]School of Mathematics and Statistics and Xi'an-Budapest Joint Research Center for Combinatorics,Northwestern Polytechnical University,Xi'an,710129,P.R.China [2]Department of Mathematics,West Virginia University,Morgantown,WV 26506,USA [3]Research Institute of Mathematical Science and School of Mathematics and Statistics,Jiangsu Normal University,Xuzhou,221116,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2020年第6期723-732,共10页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China(Grant Nos.11871397 and 11971205);the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JM-083);the Fundamental Research Funds for the Central Universities(Grant No.3102019ghjd003)。
摘 要:Let k be a positive integer.A graph G is k-weight choosable if,for any assignment L(e)of k real numbers to each e∈E(G),there is a mapping f:E(G)→R such that f(uv)∈L(uv)and∑e∈∂(u)^f(e)≠∑e∈∂(u)^f(e)for each uv∈E(G),where?(v)is the set of edges incident with v.As a strengthening of the famous 1-2-3-conjecture,Bartnicki,Grytczuk and Niwcyk[Weight choosability of graphs.J.Graph Theory,60,242–256(2009)]conjecture that every graph without isolated edge is 3-weight choosable.This conjecture is wildly open and it is even unknown whether there is a constant k such that every graph without isolated edge is k-weight choosable.In this paper,we show that every connected graph of maximum degree 4 is 4-weight choosable.
关 键 词:1-2-3 conjecture weighting weight choosability Combinatorial Nullstellensatz
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179