检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈桂菊[1] CHEN Guiju(Acndemic Librany, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China)
机构地区:[1]浙江医药高等专科学校高校图书馆,浙江宁波315100
出 处:《微型电脑应用》2020年第6期93-96,共4页Microcomputer Applications
摘 要:高校图书馆图书借阅流量受到多种因素的综合作用,具有十分强烈的随机性,而当前高校图书馆图书借阅流量预测方法无法准确描述随机性变化特点,使得高校图书馆图书借阅流量预测误差大,结果可信度低。为了提高高校图书馆图书借阅流量预测精度,提出了基于数据挖掘的高校图书馆图书借阅流量预测方法。首先对高校图书馆图书借阅流量的国内外研究时展进行分析,找到引起高校图书馆图书借阅流量预测误差大的原因,然后采用混沌理论对高校图书馆图书借阅流量历史数据进行分析,并采用数据挖掘技术对高校图书馆图书借阅流量变化特性进行拟合,建立高校图书馆图书借阅流量预测模型,最后采用实例对高校图书馆图书借阅流量预测效果进行了测试。结果表明,高校图书馆图书借阅流量预测精度超过95%,远远高于高校图书馆管理要求的85%,而且高校图书馆图书借阅流量建模效率得到了大幅度改善。The book lending flow of a university library is affected by many factors,and it has a very strong stochastic characteristic.However,the current prediction method of book lending flow of university library cannot accurately describe the stochastic characteristic,which makes the prediction error of book lending flow of university library large and the result credibility low.In order to improve the prediction of book lending flow of university library precision,this paper puts forward a prediction method based on data mining.Firstly,this paper analyzes the research progress at home and abroad on the book lending flow of university library,finds out the reasons that cause the large error in the prediction of the book lending flow of university library,then uses chaos theory to analyze the historical data of the book lending flow,uses data mining technology to fit the changing characteristics of the book lending flow,and establishes the book lending flow of university library.The prediction model of library’s book lending flow is established.Finally,the prediction effect of library’s book lending flow is tested by an example.The results show that the prediction accuracy of the method is more than 95%,which is much higher than 85%of the requirements of university library management.Moreover,the modeling efficiency of library lending flow in university library has been greatly improved.
关 键 词:高校图书馆 借阅流量数据 组合优化技术 数据挖掘 混沌理论
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222