检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Yinglin 王英林(School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433,China)
出 处:《Journal of Shanghai Jiaotong university(Science)》2020年第3期325-332,共8页上海交通大学学报(英文版)
基 金:the National Natural Science Foundation of China(No.61375053);the Project of Shanghai University of Finance and Economics(Nos.2018110565 and 2016110743)。
摘 要:Nowadays,the Internet has penetrated into all aspects of people's lives.A large number of online customer reviews have been accumulated in several product forums,which are valuable resources to be analyzed.However,these customer reviews are unstructured textual data,in which a lot of ambiguities exist,so analyzing them is a challenging task.At present,the effective deep semantic or fine-grained analysis of customer reviews is rare in the existing literature,and the analysis quality of most studies is also low.Therefore,in this paper a fine-grained opinion mining method is introduced to extract the detailed semantic information of opinions from multiple perspectives and aspects from Chinese automobile reviews.The conditional random field (CRF) model is used in this method,in which semantic roles are divided into two groups.One group relates to the objects being reviewed,which includes the roles of manufacturer,the brand,the type,and the aspects of cars.The other group of semantic roles is about the opinions of the objects,which includes the sentiment description,the aspect value,the conditions of opinions and the sentiment tendency.The overall framework of the method includes three major steps.The first step distinguishes the relevant sentences with the irrelevant sentences in the reviews.At the second step the relevant sentences are further classified into different aspects.At the third step fine-grained semantic roles are extracted from sentences of each aspect.The data used in the training process is manually annotated in fine granularity of semantic roles.The features used in this CRF model include basic word features,part-of-speech (POS) features,position features and dependency syntactic features.Different combinations of these features are investigated.Experimental results are analyzed and future directions are discussed.
关 键 词:Chinese opinion mining conditional random field(CRF) semantic role labelling Chinese car reviews
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.141.19