基于SVR的船舶航行安全评估模型  被引量:4

Ship navigation safety assessment model based on SVR

在线阅读下载全文

作  者:常婧 柳晓鸣[1] 李梦蕊 CHANG Jing;LIU Xiaoming;LI Mengrui(Information Science and Technology College,Dalian Maritime University,Dalian 116026,Liaoning,China)

机构地区:[1]大连海事大学信息科学技术学院,辽宁大连116026

出  处:《上海海事大学学报》2020年第2期21-26,共6页Journal of Shanghai Maritime University

摘  要:为对船舶航行安全状况进行有效预测,利用支持向量回归(support vector regression,SVR)算法构建船舶航行安全评估模型。在分析影响船舶航行安全的因素的基础上,对船舶历史数据进行预处理后将其作为模型训练和测试的样本数据。实验结果表明:该模型评估准确度可达99.6%以上;在同一样本数据条件下,模型的评估准确度和稳定性均优于基于极限学习机(extreme learning machine,ELM)构建的模型。模型的评估结果为水上交通管理部门的监管提供参考。In order to effectively predict the ship navigation safety status,the ship navigation safety assessment model is constructed by the support vector regression(SVR)algorithm.Based on the analysis of the factors affecting ship navigation safety,the ship historical data are preprocessed and used as sample data for model training and testing.The experimental results show that:the accuracy of the model evaluation can reach more than 99.6%;under the same sample data conditions,the accuracy and stability of the model are better than those constructed based on the extreme learning machine(ELM).The assessment results of the model provide reference for the supervision of the water traffic management department.

关 键 词:航行安全 安全评估 支持向量回归(SVR) 极限学习机(ELM) 

分 类 号:U676.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象